公共教育学院(马克思主义学院)
|
洛必达法则(定理)
洛必达法则(l'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)所发现的,因此也被叫作伯努利法则(Bernoulli's rule)。
洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
基本理解:
⑴本定理所有条件中,对x→∞的情况,结论依然成立。
⑵本定理第一条件中,lim f(x)和lim F(x)的极限皆为∞时,结论依然成立。
⑶上述lim f(x)和lim F(x)的构型,可精练归纳为0/0、∞/∞;与此同时,下述构型也可用洛必达法则求极限,只需适当变型推导:0·∞、∞-∞、1的∞次方、∞的0次方、0的0次方。(上述构型中0表示无穷小,∞表示无穷大。)
主要应用
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。
注意事项
⑴在着手求极限以前,首先要检查是否满足0/0或∞/∞型构型,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
⑵若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
⑶洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
⑷洛必达法则常用于求不定式极限。基本的不定式极限:0/0型;∞/∞型(x→∞或x→a),而其他的如0*∞型,∞-∞型,以及1^∞型,∞^0型和0^0型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。